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Abstract

While multi-sample spatially-resolved transcriptomics (mSRT) technologies have enhanced our ability to compare
different tissues across conditions and time points, they often introduce technical artifacts or batch effects that
confound biological interpretability. Current batch effect correction methods either sacrifice interpretability
for performance or fail to adequately leverage spatial context. BatchBlend addresses this gap by extending
the interpretable framework of Popari with an explicit batch effect term, enabling the separation of technical
variation from biological signal while maintaining an interpretable framework. The model is formulated as a
non-negative matrix factorization with hidden Markov random fields (NMF-HMRF) similar to Popari with
an added sample-specific batch effect term. Through comprehensive evaluation on simulated mSRT data,
BatchBlend demonstrates competitive batch effect correction while maintaining moderate biological signal
preservation compared to established methods: PyLiger, scVI, and STAligner. In addition, BatchBlend’s
performance in batch effect correction on mouse brain coronal slices was analyzed when integrating data from
MERFISH, MERSCOPE and STARmap. While BatchBlend offers an interpretable approach to mSRT batch
correction, further methodological refinements are needed to fully leverage spatial context during integration,
presenting promising directions for future research to enhance both integration quality and biological signal
preservation in spatially resolved transcriptomics.
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Chapter 1

Introduction and Background

The spatial organization of gene expression is a fundamental determinant of phenotypic heterogeneity in various
biological systems. Traditional approaches to quantifying in vivo transcriptomic information such as bulk or
single-cell RNA sequencing fail to capture spatial context, as they require the dissociation of single cells from their
tissue environment. This limitation prevents such technologies from characterizing key in situ aspects of cellular
architecture such as cell-cell interactions and tissue organization. Recently, spatially-resolved transcriptomics
(SRT) technologies have bridged this gap by preserving spatial information while quantifying gene expression.

As the field advances, experimental designs have evolved from single-sample to multi-sample SRT (mSRT)
approaches, which allow comparison of different tissues across conditions and time points. While this development
enhances statistical power and enables more robust biological comparisons, it can introduce variability driven by
technical artifacts or batch effects which confound the biological interpretability of results. Therefore, batch effect
correction is essential to mitigate these discrepancies, ensuring that inferred conclusions about the differences in
gene expression between conditions are attributable to biological variation rather than technical noise.

1.1 scRNA-seq Data Batch Effect Correction
The challenge of batch effect correction for transcriptomic data integration has been extensively investigated.
Numerous methods have been developed for scRNA-seq data. scVI [1] employs a variational autoencoder
framework that models count distribution and technical effects in scRNA-seq data. While effective at batch effect
correction, its complex neural network architecture and non-linear transformations create latent representations
that lack direct biological interpretability. Similarly, Harmony [2] uses iterative clustering and correction to
project cells into a shared embedding, but the transformations applied during this process cannot be easily
attributed back to specific genes. BBKNN, Batch Balanced K-Nearest Neighbors, [3] and Scanorama [4] prioritize
computational efficiency and correction performance through k-nearest neighbor graphs and panorama stitching
approaches, respectively, but sacrifice interpretability in their integration processes.

Several interpretable methods have also been developed for scRNA-seq batch effect correction. PyComBat
[5] implements a parametric empirical Bayes framework that estimates location and scale parameters for each
batch to model gene expression as a function of the biological covariates with batch effect [6]. Although robust
for bulk RNA-seq data, PyComBat cannot adequately capture the sparsity characteristic of single-cell and
spatial transcriptomic data. PyLiger[7], which extends LIGER[8] to Python, uses integrative non-negative matrix
factorization (iNMF) to learn shared and dataset-specific factors, thereby identifying common metagenes across
batches.

1
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Similarly, UINMF[9] extends the iNMF approach to find shared and dataset-specific factors for integration
by using a union-intersection approach to identify similar biological signals while accounting for dataset-specific
features. By maintaining the non-negativity constraints of transcriptomic data, PyLiger and UINMF preserve
biological interpretability, where factors represent co-expressed genes. Seurat’s [10] anchor-based integration
methods, which align datasets based on shared cell states, maintain interpretability by operating directly on
gene expression values, allowing users to trace integration effects back to specific genes across different batches.
Despite their enhanced interpretability, these methods typically fail to incorporate spatial relationships between
cells or spots in SRT data.

1.2 mSRT Data Batch Effect Correction
In mSRT analysis, correcting for batch effect while integrating transcriptomic and spatial data poses distinct
challenges. Due to the reduced number of genes compared to scRNA-seq data [11], the lower spatial resolution
of SRT technologies [12], and technical artifacts in the experimental procedures [11], SRT data typically exhibits
a much lower signal-to-noise ratio than scRNA-seq data, thus decreasing the expected success rate of prior batch
effect correction algorithms designed for the scRNA-seq modality.

PRECAST [13], an early attempt to mitigate these drawbacks, models spatial data as a probabilistic factor
model and estimates low-dimensional embeddings that account for batch effects by unifying spatial factor
analysis with clustering and embedding alignment. However, this approach does not explicitly capture the spatial
interaction between the learned factors and does not enforce non-negativity of the learned factors, hindering the
interpretability of the model.

Subsequently developed methods for mSRT analysis tend to leverage strong inductive biases in order to
handle low data quality. For example, graph learning-based approaches have emerged as a dominant strategy to
integrate SRT data. INSPIRE [14] is a deep learning-based approach that uses a graph neural network (GNN)
and adversarial learning to adaptively remove batch effects from biological variation. By incorporating cell-cell
interactions through spatial graphs, it recovers biological signals from technical variation, but the nonlinearities
introduced by the GNN means that INSPIRE offers even less interpretability than PRECAST.

Similarly, SpatiAlign [15] employs a deep graph infomax (DGI) framework that captures intercellular
relationships and uses self-supervised contrastive learning to align biologically similar cells. While SpatiAlign
outperforms PRECAST [15], it also sacrifices interpretability due to its complex graph transformations. Building
on these graph-based approaches, STAligner [16] introduces a spatial-temporal framework that incorporates both
spatial coordinates and gene expression into a unified graph representation. Despite its effectiveness in capturing
complex spatial patterns during integration, STAligner, like INSPIRE and SpatiAlign, employs multiple graph
transformation steps and embedding alignments that obscure the direct relationship between input genes and
integration results.

1.3 Gap in Current Approaches
The current landscape of mSRT batch effect correction methods predominantly relies on deep learning architectures
that, while effective, sacrifice interpretability — a crucial aspect for generating biological insights. Alternatively,
scRNA-seq methods that maintain interpretability often inadequately capture spatial interactions. This highlights
a significant gap in the field: the need for methods that can both address the unique challenges of mSRT data
while maintaining the interpretability that is crucial for biological insight.

Popari is a probabilistic graphical model designed specifically for mSRT analysis. It employs a non-negative
matrix factorization coupled with a hidden Markov random field (NMF-HMRF) approach to capture both gene
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expression patterns and spatial context. The framework represents gene expression data via a combination of
shared metagenes and sample-specific spatial parameters, while incorporating spatial information through a graph
structure that can model relationships between neighboring spatial entities. This interpretable approach allows
researchers to identify co-expressed gene modules and visualize their spatial distribution across multiple tissue
samples. The key strength of Popari is its ability to maintain biological interpretability through non-negative
matrix factorization while accounting for the spatial context through the HMRF component. However, Popari
lacks an explicit formulation for batch effect correction which limits its ability to integrate data from different
experimental runs without pre-processing to mitigate the technical variation.

Therefore, BatchBlend directly addresses this gap by incorporating batch effect correction within the
established Popari framework. By maintaining the original model’s interpretable structure while adding a batch
effect term, we can model the separability of technical variation from the biological representation of the data
without compromising the interpretive power of the model.



Chapter 2

Formulation of BatchBlend

2.1 Formulation of BatchBlend as a Probabilistic Model
Multi-sample spatially-resolved transcriptomics (mSRT) data are comprised of spatial coordinates and gene
expression profiles for cellular entities across multiple tissue samples. For an SRT sample indexed by t, the data
Dt is represented by a tuple Dt = {Yt,Ct} where Yt ∈ RG×N

+ represents the gene expression profile for N
spatial entities across G genes and Ct ∈ R2×N represents the 2D Euclidean coordinates of the sample.

Building upon the non-negative matrix factorization (NMF) framework established by Popari, BatchBlend
extends the model to explicitly account for batch effects. In the original Popari formulation, for a sample t, the
gene expression matrix Yt is represented as a function of shared K metagenes matrix M ∈ RG×K

+ , sample-specific
coefficients Xt ∈ RK×N

+ , and unexplained variance Et ∈ RG×N where each column ei ∼ N (0, (σt
y)

2I) drawn
identically and independently distribution from a multivariate Gaussian with a shared variance parameter (σt

y)
2.

Yt = MXt +Et

BatchBlend explicitly incorporates a batch effect term β ∈ RT×K
+ as an additive term which is unique to each

sample t yielding:

Yt = M(Xt + βt) +Et

This formulation preserves the fundamental structure of the original model while introducing a sample-specific
batch effect term βt. The key advantage of this approach is that it maintains the interpretability of shared
metagenes M across samples while explicitly modeling batch-related variation.

Within this probabilistic graphical model, we define a node potential function (Eq. 2.1) that quantifies the
difference between observed gene expression and our model’s prediction for a sample t and spatial entity i.

ϕ(xti, y
t
i , β

t) = exp

(︃
−∥yti − M(xti + βt)∥22

2(σt
y)

2

)︃
(2.1)

This function assigns higher values when the model’s prediction closely matches the observed expression data,
reflecting a higher probability of the observed data given the model parameters.

To capture spatial relationships between neighboring entities, we define edge potentials (Eq. 2.2) for any
sample t and spatial entities i and j. The matrix, Λt ∈ RK×K contains learnable parameters that express the
pairwise spatial affinities of the K metagenes.

4
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φ(xti, x
t
j) = exp

(︄
− (xti)

⊤

∥xti∥1
Λt

(xtj)

||xtj ||1

)︄
(2.2)

The complete joint probability distribution for our NMF-HMRF model can be expressed as:

P (Y,X,β,Θ) =

T∏︂
t=1

P (Y t, Xt, βt,Θt)

=

T∏︂
t=1

P (Y t, Xt, βt|Θt)P (Θt)

=

T∏︂
t=1

P (Y t, Xt, βt|Θt)P (Λt)

where Θ = {M,Λ, σy} represents the learnable model parameters and P (Λt) is a Gaussian prior distribution
over Λt.

By applying the Hammersley-Clifford theorem, we can express the model’s likelihood as a product of the
node and edge potentials:

P (Y t, Xt, βt|Θt) =
1

Z(Θt)

Nt∏︂
i=1

⎡⎣ϕ(xti, yti ,βt)πx(x
t
i)

∏︂
(i,j)∈Et

φ(xti, x
t
j)

⎤⎦
where Z(Θt) is the partition function that ensures proper normalization of the probability distribution. In
addition, we introduce a prior on the representation of node i relative to xti: πx(xti) = exp(−λ∥xti − x̄ti∥1) such
that

x̄ti =
1

T − 1

∑︂
t′∈T\t

⎡⎣ 1

|N t′ |
∑︂
i∈Nt′

xt
′

i

⎤⎦
Note that this term is constant with respect to xti.

2.2 Alternating Coordinate Descent Optimization
Directly maximizing the likelihood function of the joint NMF-HMRF model with batch effect correction is
computationally intractable. To address this challenge, we employ an alternating coordinate descent approach
that optimizes each set of parameters while holding the others fixed.

Our optimization strategy proceeds as follows:

1. Fix Θt and βt, and optimize Xt

2. Fix Θt and Xt, optimize βt

3. Fix Xt and βt, optimize Θt

For the latent embeddings Xt, we derive the maximum a posteriori (MAP) estimate through a reparameterization
of the posterior distribution, leading to a constrained optimization problem that can be solved using projected
coordinate descent with acceleration. Similarly, for the batch effect parameters βt, we employ a different
reparameterization of the posterior distribution, resulting in another constrained optimization problem solvable
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via projected coordinate descent. When the optimization problem exhibits strong convexity, indicating by
the positive definiteness of the Hessian, we leverage Nesterov’s Accelerated Gradient method to achieve faster
convergence. Nesterov’s Accelerated Gradient improves upon standard gradient descent by incorporating
momentum, which helps avoid oscillations in regions of high curvature while maintaining rapid convergence in
flatter regions. This acceleration is particularly beneficial for these two strongly convex subproblems and hence
we will verify the positive definiteness of the Hessian matrices. For each of the model parameters Θt, we employ
different strategies. The shared metagenes M require joint optimization across all graphs and are estimated
using projected gradient descent with acceleration, as the corresponding optimization problem is strongly convex.
The spatial interaction parameters Λt are optimized using the Adam optimizer, as the MAP estimate leads to a
convex optimization problem. The variance parameter σt

y has a closed-form solution derived from the likelihood
function.

In the following sections, we derive the optimization procedures for each component of our model in detail.

2.3 Derivation of the Latent Space (X t) Optimization
To optimize Xt we employ the MAP estimate:

X̂
t

MAP = argmax
Xt∈RK×N

+

P (Xt|Y t, βt,Θt)

By Bayes’ rule and taking the negative logarithm, this is equivalent to:

X̂
t
= argmax

Xt

P (Y t, Xt, βt|Θt)P (Λt)

= argmin
Xt

[︁
− log(P (Y t, Xt, βt|Θt))− log(P (Λt))

]︁

= argmin
Xt

⎡⎣− log

⎛⎝ 1

Z(Θt)

Nt∏︂
i=1

⎡⎣ϕ(xti, yti , βt)πx(x
t
i)

∏︂
(i,j)∈Et

φ(xti, x
t
j)

⎤⎦⎞⎠⎤⎦

= argmin
Xt

⎡⎣∑︂
i∈Vt

⎡⎣∥yti −M(xti + βt)∥22
2(σt

y)
2

+ λ⊤x ∥xti − x̄ti∥1 +
∑︂

(i,j)∈Et

(xti)
⊤

∥xti∥1
Λt

(xtj)

∥xtj∥1

⎤⎦+ log(Z(Θt))

⎤⎦
To facilitate optimization, we decompose xti into stiz

t
i , where sti = ∥xti∥1 ∈ R+ represents a size factor and

zti ∈ SK−1 is a point on the K-dimensional simplex. This decomposition preserves convexity and leads to a more
efficient optimization procedure:

x̂ti = argmin
xt
i

⎡⎣∥yti −M(xti + βt)∥22
2(σt

y)
2

+ λ⊤x ∥xti − x̄ti∥1 +
∑︂

(i,j)∈Et

(xti)
⊤

∥xti∥1
Λt

(xtj)

∥xtj∥1

⎤⎦

= argmin
sti∈R+,zt

i∈Sk−1

⎡⎣∥yti − stiMzti −Mβt)∥22
2(σt

y)
2

+ λ⊤x ∥stiẑ
t
i − x̄ti∥1 +

∑︂
(i,j)∈Et

(zti)
⊤Λt(ztj)

⎤⎦ (2.3)
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With this reformulation, we can alternately optimize sti and zti . For updating sti with fixed zti = ẑti, we compute
the partial derivative:

∂

∂sti

⎡⎣∥yti − stiMẑti −Mβt)∥22
2(σt

y)
2

+ λ⊤x ∥stiẑ
t
i − x̄ti∥1 +

∑︂
(i,j)∈Et

(ẑti)
⊤Λt(ztj)

⎤⎦

=
∂

∂sti

[︃
∥yti − stiMẑti −Mβt)∥22

2(σt
y)

2
+ λ⊤x ∥stiẑ

t
i − x̄ti∥1

]︃

=
∂

∂sti

[︃
(yti − stiMẑti −Mβt)⊤(yti − stiMẑti −Mβt)

2(σt
y)

2
+ λ⊤x ∥stiẑ

t
i − x̄ti∥1

]︃

=
∂

∂sti

[︄
(yti − stiMẑti −Mβt)⊤(yti − stiMẑti −Mβt)

2(σt
y)

2
+
∑︂
k

λx · sgn (stiẑ
t
ik − xtik) · (stiẑ

t
ik − xtik)

]︄

=
−2(Mẑti)

⊤yti + 2sti(Mẑti)
⊤(Mẑti) + 2(Mẑti)

⊤(Mβt)

2(σt
y)

2
+ λx

∑︂
k

· sgn
(︁
stiẑ

t
ik − xtik

)︁
· ẑtik

where sgn represents the signum function. Due to the presence of these terms, the value of the derivative depends
on the region of R+ in which we constrain sti to lie; for convenience, we constrain sti to the region in which
sgn

(︂
sti −

xt
ik

ẑt
ik

)︂
< 0 ∀ k; this simplifies the derivative greatly, as the signum function always evaluates to −1.

Setting this expression to 0 and solving for sti, we obtain:

ŝti =
2(Mẑti)

⊤(yti)− 2(Mẑti)
⊤(Mβt) + 2(σt

y)
2λx

2(Mẑti)
⊤(Mẑti)

=
(Mẑti)

⊤(yti)− (Mẑti)
⊤(Mβt) + (σt

y)
2λx

(Mẑti)
⊤(Mẑti)

Given our constraints, the final step is to clip ŝti to lie within the convex constraint space:

mi = min
k

(︃
xtik
ẑtik

)︃

ŝti = min

(︄
max

(︄
(Mẑti)

⊤(yti)− (Mẑti)
⊤(Mβt) + (σt

y)
2λx

(Mẑti)
⊤(Mẑti)

, 0

)︄
,mi

)︄

For optimizing zti with fixed sti = ŝti, we compute the both the gradient and the Hessian:
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∂2

∂(zti)
2

⎡⎣∥yti − stiMẑti −Mβt)∥22
2(σt

y)
2

+ λx∥stiẑ
t
i − x̄ti∥1 +

∑︂
(i,j)∈Et

(ẑti)
⊤Λt(ztj)

⎤⎦

=
∂2

∂(zti)
2

⎡⎣ (yti − stiMẑti −Mβt)⊤(yti − stiMẑti −Mβt)

2(σt
y)

2
+ λx∥stiẑ

t
i − xtik∥1 +

∑︂
(i,j)∈Et

(ẑti)
⊤Λt(ztj)

⎤⎦

=
∂

∂zti

⎡⎣−ŝtiM⊤(yti) + (ŝti)
2(MTM)(zti) + (ŝti)(β

t)⊤(MTM)

(σt
y)

2
+ λxs

t
i · sgn (stiẑ

t
i − xti) +

∑︂
(i,j)∈Et

Λt(ztj)

⎤⎦

=
2(ŝti)

2(MTM)

2(σt
y)

2

=
(ŝti)

2(MTM)

(σt
y)

2

Since ŝti ∈ R+ and M ∈ RG×K
+ , the Hessian is positive definite, confirming the problem is strongly convex. Thus,

it is appropriate to use proximal Nesterov’s Accelerated Gradient method for optimization.

2.4 Derivation of the Batch Effect (βt) Optimization
To optimize the batch effect parameters βt, we again employ a MAP estimate:

β̂
t

MAP = argmax
βt∈RT×K

P (βt|Xt, Y t,Θt)

Following a similar approach as for Xt, we can express this as:

β̂
t
= argmax

βt

P (Y t, Xt, βt|Θt)P (Λt)

= argmin
βt

[− log(P (Y t, Xt, βt|Θt))− log(P (Λt))]

To simplify the optimization, we employ the mean-field approximation:

P (Y t, Xt, βt|Θt) ≈ P (βt|Y t, Xt,Θt)

Nt∏︂
i=1

P (yti , x
t
i|βt,Θt, Xt

−i, Y
t
−i) (2.4)

=
1

Z̄(Θt)

1

Zβt

Nt∏︂
i=1

[ψ(βt)ϕ(xti, y
t
i)πx(x

t
i)

∏︂
(i,j)∈Et

φ(xti, x
t
j)]
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where

ψ(βt) = exp

(︃
−∥Mβt∥22 − 2∥(yti −Mxti)

⊤(Mβt)∥1
2(σt

y)
2

)︃

ϕ(xti, y
t
i) = exp

(︃
−∥yti −Mxti∥22

2(σt
y)

2

)︃
The partition function is given by

Z(Θt) =

∫︂
Xt,Y t,βt

P (Y t, Xt, βt|Θt) dXt dY t dβt

=

∫︂
Xt,Y t

Nt∏︂
i=1

P (yti , x
t
i|βt,Θt, Xt

−i, Y
t
−i) dX

t dY t

∫︂
βt

P (βt|Y t, Xt,Θt) dβt

=

∫︂
Xt,Y t

Nt∏︂
i=1

⎡⎣ϕ(xti, yti)πx(xti) ∏︂
(i,j)∈Et

φ(xti, x
t
j)

⎤⎦ dXt dY t

∫︂
βt

ψ(βt) dβt (2.5)

= Z̄(Θt)Zβt

This leads to the following optimization problem for βt:

β t̂ = argmin
βt

⎡⎣− log

⎛⎝ 1

Z̄(Θt)

1

Zβt

Nt∏︂
i=1

⎡⎣ψ(βt)ϕ(xti, y
t
i)πx(x

t
i)

∏︂
(i,j)∈Et

φ(xti, x
t
j)

⎤⎦⎞⎠⎤⎦

= argmin
βt

Nt∑︂
i=1

[
∥Mβt∥22 − 2∥(yti −Mxti)

⊤(Mβt)∥1
2(σt

y)
2

+
∥yti −Mxti∥22

2(σt
y)

2
+ λ⊤x ∥xti − x̄ti∥1

+
∑︂

(i,j)∈Et

(xti)
⊤

∥xti∥1
Λt

(xtj)

∥xtj∥1
] + log(Z̄(Θt) + log(Zβt)

= argmin
βt

Nt∑︂
i=1

[︃
∥Mβt∥22 − 2∥(yti −Mxti)

⊤(Mβt)∥1
2(σt

y)
2

]︃

For a specific node i, this becomes:

βt = argmin
βt

[︃
∥Mβt∥22 − 2∥(yti −Mxti)

⊤(Mβt)∥1
2(σt

y)
2

]︃
The Hessian of this objective is given by
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∂2

∂(βt)2

[︃
∥Mβt∥22 − 2∥(yti −Mxti)

⊤(Mβt)∥1
2(σt

y)
2

]︃

=
∂2

∂(βt)2

[︃
(Mβt)⊤(Mβt)− 2(yti −Mxti)

⊤(Mβt)

2(σt
y)

2

]︃

=
∂

∂βt

[︃
2(M⊤M)βt − 2(yti)

⊤M + 2(xti)
⊤(M⊤M)

2(σt
y)

2

]︃

=
M⊤M

(σt
y)

2

Since M ∈ RG×K
+ , the Hessian is positive definite, confirming that this problem is α-strongly convex. Therefore,

we can employ the proximal Nesterov’s Accelerated Gradient method for optimization.

2.5 Derivation of Parameters (Θt) Optimization
Having established the optimization procedures for the latent space variables Xt and batch effect parameters βt,
we now turn our attention to optimizing the model parameters Θt = {M,Λt, σt

y}. For the model parameters Θt,
we maximize the posterior probability:

Θ̂MAP = argmax
Θ

P (Y,X, β,Θ)

= argmax
Θ

T∏︂
t=1

P (Y t, Xt, βt|Θt)P (Λt)

= argmax
Θ

T∑︂
t=1

log(P (Y t, Xt, βt|Θt)) + log(P (Λt))

Using the mean-field approximation in Eq. 2.4 and the Hammersley-Clifford theorem, we can express the
optimization for a sample t as:
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Θ̂
t
≈ argmax

Θt

⎡⎣log
⎛⎝P (βt|Y t, Xt,Θt)

Nt∏︂
i=1

P (yti , x
t
i|βt,Θt, Xt

−i, Y
t
−i)

⎞⎠+ log(P (Λt))

⎤⎦

= argmax
Θt

Nt∑︂
i=1

⎡⎣log(ψ(βt)) + log(ϕ(xti, y
t
i)) + log(πx(x

t
i)) +

∑︂
(i,j)∈Et

log(φ(xti, x
t
j))

⎤⎦
− log(Z̄(Θt))− log(Zβt) + log(P (Λt))

= argmax
Θt

Nt∑︂
i=1

[︃
∥Mβt∥22 − 2∥(yti −Mxti)

⊤(Mβt)∥1
2(σt

y)
2

+
∥yti −Mxti∥22

2(σt
y)

2
+ λ⊤x ∥xti − x̄ti∥1

+
∑︂

(i,j)∈Et

(xti)
⊤

∥xti∥1
Λt

(xtj)

∥xtj∥1

⎤⎦− log(Z̄(Θt)− log(Zβt) + log(P (Λt))

= argmin
Θt

Nt∑︂
i=1

[︃
∥Mβt∥22 − 2∥(yti −Mxti)

⊤(Mβt)∥1
2(σt

y)
2

+
∥yti −Mxti∥22

2(σt
y)

2
+ λ⊤x ∥xti − x̄ti∥1

+
∑︂

(i,j)∈Et

(xti)
⊤

∥xti∥1
Λt

(xtj)

∥xtj∥1

⎤⎦+ log(Z̄(Θt) + log(Zβt)− log(P (Λt))

The optimization of Θt involves calculating the partition functions Z̄(Θt) and Zβt , and then separately optimizing
each of the parameters M, Λt, and σt

y.

2.5.1 Calculation of Partition Functions
Using the partition function expressions derived earlier in Eq. 2.5, we can compute the analytical form for Zβt :

Zβt =

∫︂
βt

ψ(βt) dβt

=

∫︂
βt

exp

(︃
−∥Mβt∥22 − 2∥(yti −Mxti)

T (Mβt)∥1
2(σt

y)
2

)︃
dβt

=

∫︂
βt

exp

(︄
−
(Mβt)⊤(Mβt)− 2

∑︁
i∈Vt(yti −Mxti)

⊤(Mβt)

2(σt
y)

2

)︄
dβt
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Defining c =
∑︁

i∈V t(yti −Mxti), which is a constant with respect to βt, we have:

Zβt =

∫︂
βt

exp

(︃
− (Mβt)⊤(Mβt)− 2c⊤(Mβt)

2(σt
y)

2

)︃
dβt

=

∫︂
βt

exp

(︃
− (βt)⊤(M⊤M)βt − 2(c⊤M)βt)

2(σt
y)

2

)︃
dβt

By completing the square in the exponent:

Zβt =

∫︂
βt

exp

(︃
− (βt − (M⊤M)−1(M⊤c))⊤(M⊤M)(βt − (M⊤M)−1(M⊤c))− (M⊤c)⊤(M⊤M)−1(M⊤c)

2(σt
y)

2

)︃
dβt

The term (MT c)T (MTM)−1(MT c) is a constant, so we can factor it out:

Zβt ∝
∫︂
βt

exp

(︃
− (βt − (M⊤M)−1(M⊤c))⊤(M⊤M)(βt − (M⊤M)−1(M⊤c))

2(σt
y)

2

)︃
dβt

This integral is a multidimensional Gaussian integral, which has the closed-form solution:

Zβt = (2π(σt
y)

2)
K
2 det(M⊤M)−

1
2

For the derivation of the node-specific partition function we can first decompose the integral:

Zī(Θ
t) =

∫︂
xt
i,y

t
i

ϕ(xti, y
t
i)πx(x

t
i)

∏︂
(i,j)∈Et

φ(xti, x
t
j) dx

t
i dy

t
i

=

∫︂
xt
i

πx(x
t
i)

∏︂
(i,j)∈Et

φ(xti, x
t
j)

∫︂
yt
i

ϕ(xti, y
t
i) dy

t
i dx

t
i

The inner integral Zī
Y
(Θt) over yti can be computed as a Gaussian integral:

Zī
Y
(Θt) =

∫︂
yt
i

ϕ(xti, y
t
i) dy

t
i

=

∫︂
yt
i

exp

(︃
−∥yti −Mxti∥22

2(σt
y)

2

)︃
dyti

= (2π(σt
y)

2)
G
2

For the outer integral over xti, we use the same reparameterization as in Eq. 2.3, writing xti = stiz
t
i where

sti = |xti|1 ∈ R+ and zti ∈ SK−1 is a point on the K-dimensional simplex. The Jacobian of this transformation is
given by (sti)

K−1, yielding:
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Zī
X
(Θt) =

∫︂
xt
i

πx(x
t
i)

∏︂
(i,j)∈Et

φ(xti, x
t
j) dx

t
i

=

∫︂
sti,z

t
i

(sti)
K−1 exp(−λx(sti))

∏︂
(i,j)∈Et

exp(−(zti)
⊤Λt(ztj)) ds

t
i dz

t
i,1 · · · dzti,K−1

=

∫︂
sti

(sti)
K−1 exp(−λx(sti)) dsti

∫︂
zt
i

exp

⎛⎝−
∑︂

(i,j)∈Et

(zti)
⊤Λt(ztj)

⎞⎠ dzti,1 · · · dzti,K−1

The integral over sti can be computed to a closed form as follows:∫︂
sti

(sti)
K−1 exp(−λx(sti)) dsti = λ−K

x (K − 1)!

To find the analytic form for the integral over zti , let ηth,i := Λt
h

∑︁
j∈η(i) z

t
h,j . Then we define a function

f tik : ztik ↦→ exp (−ηtik · ztik) for each dimension of ηth,i. Then we can rewrite the integral as follows where the ∗
symbol represents the convolution operator.

ZZ
i (Θt

h) :=

∫︂
zt
h,i∈SK−1

exp

⎛⎝−
∑︂

j∈η(i)

(zth,i)
⊤Λt

hz
t
h,j

⎞⎠ dzth,i(K−1) · · · dz
t
h,i1

=

∫︂
zt
h,i∈SK−1

exp
(︁
−(zth,i)

⊤ηth,i
)︁
dzth,i(K−1) · · · dz

t
h,i1

=

∫︂ q

0

· · ·
∫︂ q−

∑︁K−2
k=1 zt

h,ik

0

exp
(︁
−(zth,i)

⊤ηth,i
)︁
dzth,i(K−1) · · · dz

t
h,i1

⃓⃓⃓⃓
q=1

= (∗Kk=1f
t
h,ik)(1)

This means that the integral represents the convolution of the functions f evaluated at 1. From this step, we
can apply the convolution theorem with the Laplace transform L:

L[(∗Kk=1f
t
h,ik)(1)] =

K∏︂
k=1

L[f th,ik] = s ↦→
K∏︂

k=1

1

s+ ηtik

We can then apply a partial fraction decomposition:
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K∏︂
k=1

1

s+ ηtik
=

K∑︂
k=1

ak
∏︁

j ̸=k(s+ ηtij)

s+ ηtik

=⇒ ak ·
∏︂
j ̸=k

(−ηtik + ηtij) = 1

=⇒
K∏︂

k=1

1

s+ ηtik
=

K∑︂
k=1

1

(s+ ηtik)
∏︁

j ̸=k(η
t
ij − ηtik)

Now, since the inverse Laplace transform L−1 is linear, we can then compute this as follows:

L−1
[︁
L
[︁(︁
∗Kk=1f

t
h,ik

)︁
(1)
]︁]︁

=

K∑︂
k=1

1∏︁
j ̸=k(η

t
ij − ηtik)

· L−1

[︃
1

(s+ ηtik)

]︃

=

K∑︂
k=1

exp(−ηtik)∏︁
j ̸=k(η

t
ij − ηtik)

Therefore the full analytic form of the integral over zti is as follows and can be computed efficiently in each
iteration of the parameter update steps.

∫︂
zt
i

exp

⎛⎝−
∑︂

(i,j)∈Et

(zti)
⊤Λt(ztj)

⎞⎠ dzti,1 · · · dzti,K−1 =

K∑︂
k=1

exp(−Λt
∑︁

i,k ẑk)∏︁
j ̸=k((Λ

t
∑︁

i,j ẑj)− (Λt
∑︁

i,k ẑk))

Therefore, the complete node-specific partition function is:

Zī(Θ
t) =

∫︂
xt
i

πx(x
t
i)

∏︂
(i,j)∈Et

φ(xti, x
t
j)

∫︂
yt
i

ϕ(xti, y
t
i) dy

t
i dx

t
i

=

∫︂
xt
i

πx(x
t
i)

∏︂
(i,j)∈Et

φ(xti, x
t
j)Zī

Y
(Θt) dxti

= Zī
Y
(Θt)Zī

X
(Θt)

= (2π(σt
y)

2)
G
2 λ−K

x (K − 1)!

K∑︂
k=1

exp(−Λt
∑︁

i,k ẑk)∏︁
j ̸=k((Λ

t
∑︁

i,j ẑj)− (Λt
∑︁

i,k ẑk))

With these partition functions, we can now proceed to deriving the optimization of each of the model parameters.
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2.5.2 Optimization of the Metagene Matrix M

The optimization of the shared metagene matrix M across all samples is formulated as:

ˆ︂M = argmax
M

T∏︂
t=1

1

Z̄(Θt)

1

Zβt

Nt∏︂
i=1

⎡⎣ψ(βt)ϕ(xti, y
t
i)πx(x

t
i)

∏︂
(i,j)∈Et

φ(xti, x
t
j)

⎤⎦

= argmax
M

T∑︂
t=1

log

⎡⎣Nt∏︂
i=1

⎡⎣ψ(βt)ϕ(xti, y
t
i)πx(x

t
i)

∏︂
(i,j)∈Et

φ(xti, x
t
j)

⎤⎦⎤⎦
− log(Z̄(Θt))− log(Zβt)

= argmax
M

T∑︂
t=1

Nt∑︂
i=1

⎡⎣log(ψ(βt)) + log(ϕ(xti, y
t
i)) + log(πx(x

t
i)) +

∑︂
(i,j)∈Et

log(φ(xti, x
t
j))

⎤⎦
− log(Z̄(Θt))− log(Zβt)

= argmax
M

T∑︂
t=1

Nt∑︂
i=1

[︁
log(ψ(βt)) + log(ϕ(xti, y

t
i))
]︁
− log(Zβt)

= argmin
M

T∑︂
t=1

Nt∑︂
i=1

[︃
∥Mβt∥22 − 2∥(yti −Mxti)

⊤(Mβt)∥1
2(σt

y)
2

+
∥yti −Mxti∥22

2(σt
y)

2

]︃
+ log((2π(σt

y)
2)

K
2 det(M⊤M)−

1
2 )

= argmin
M

T∑︂
t=1

Nt∑︂
i=1

[︃
∥yti −M(xti + βt)∥22

2(σt
y)

2

]︃
− 1

2
log(det(M⊤M))

To optimize this expression with respect to M, we compute the derivative for a specific sample t and node i:
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∂

∂M

[︃
∥yti −M(xti + βt)∥22

2(σt
y)

2
− 1

2
log(det(M⊤M))

]︃

=
∂

∂M

[︃
(yti −M(xti + βt))⊤(yti −M(xti + βt))

2(σt
y)

2
− 1

2
log(det(M⊤M))

]︃

=
∂

∂M

[︃
(yti)

⊤(yti)− (yti)
⊤(Mxti)− (yti)

⊤(Mβt)− (Mxti)
⊤(yti) + (Mxti)

⊤(Mxti) + (Mxti)
⊤(Mβt)

2(σt
y)

2

− (Mβt)⊤(yti) + (Mβt)⊤(Mxti) + (Mβt)⊤(Mβt)

2(σt
y)

2
− 1

2
log(det(M⊤M))

]︃

=
−(yti)(x

t
i)

⊤ − (yti)(β
t)⊤ − (yti)(x

t
i)

⊤ + 2M(xti)(x
t
i)

⊤ + 2M(xti)(β
t)⊤ − (βt)(yti)

⊤

2(σt
y)

2

+
2M(βt)(xti)

⊤ + 2M(βt)(βt)⊤

2(σt
y)

2
−M(M⊤M)−1

=
−(yti)(x

t
i)

⊤ − (yti)(β
t)⊤ +M(xti)(x

t
i)

⊤ +M(xti)(β
t)⊤ +M(βt)(xti)

⊤ +M(βt)(βt)⊤

(σt
y)

2

−M(M⊤M)−1

We can use this derivative to perform gradient descent to minimize the expression. Proximal Nesterov’s
Accelerated Gradient method was later used heuristically to solve the problem.

2.5.3 Optimization of the Variance Parameter (σty)
−1

For the sample-specific variance parameter (σt
y)

−1, we formulate:

ˆ︃(σt
y)

−1
= argmax

(σt
y)

−1

1

Z̄(Θt)

1

Zβt

Nt∏︂
i=1

⎡⎣ψ(βt)ϕ(xti, y
t
i)πx(x

t
i)

∏︂
(i,j)∈Et

φ(xti, x
t
j)

⎤⎦

= argmax
(σt

y)
−1

log

⎛⎝Nt∏︂
i=1

ψ(βt)ϕ(xti, y
t
i)πx(x

t
i)

∏︂
(i,j)∈Et

φ(xti, x
t
j)

⎞⎠− log(Z̄(Θt))− log(Zβt)

= argmax
(σt

y)
−1

Nt∑︂
i=1

⎡⎣log(ψ(βt)) + log(ϕ(xti, y
t
i)) + log(πx(x

t
i)) +

∑︂
(i,j)∈Et

log(φ(xti, x
t
j))

⎤⎦− log(Z̄(Θt))− log(Zβt)

= argmin
(σt

y)
−1

Nt∑︂
i=1

[︃
∥yti −M(xti + βt)∥22

2(σt
y)

2

]︃
+
G

2
log(2π(σt

y)
2) +

K

2
log(2π(σt

y)
2) + log(det(M⊤M)−

1
2 )



CHAPTER 2. FORMULATION OF BATCHBLEND 17

Following similar steps we can compute the partial derivative of the expression for a specific node i with respect
to (σt

y)
−1 while only focusing on the terms that depend on (σt

y)
−1:

∂

∂(σt
y)

−1

⎡⎣ Nt∑︂
i=1

[︃
∥yti −M(xti + βt)∥22

2(σt
y)

2

]︃
+
G

2
log(2π(σt

y)
2) +

K

2
log(2π(σt

y)
2)

⎤⎦

=⇒ ∂

∂(σt
y)

−1

[︃
∥yti −M(xti + βt)∥22

2(σt
y)

2
+
G

2
(log(2π)− log((σt

y)
2)) +

K

2
(log(2π)− log((σt

y)
2))

]︃

=
∥yti −M(xti + βt)∥22

(σt
y)

−G(σt
y)−K(σt

y)

Computing the derivative with respect to (σt
y)

−1 and setting it to zero:

0 =

Nt∑︂
i=1

[︃
∥yti −M(xti + βt)∥22

(σt
y)

]︃
−N tG(σt

y)−N tK(σt
y)

=

Nt∑︂
i=1

[︁
∥yti −M(xti + βt)∥22

]︁
− (N tG+N tK)(σt

y)
2

Solving for (σt
y)

−1:

ˆ︃(σt
y)

−1
=

⌜⃓⃓⎷ 1

(N tG+N tK)

Nt∑︂
i=1

[∥yti −M(xti + βt)∥22]

This closed-form solution provides the optimal value for the variance parameter.

2.5.4 Optimization of the Spatial Interaction Matrix Λt

For the sample-specific spatial interaction matrix Λt, our optimization is:
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ˆ︂Λt = argmax
Λt

1

Z̄(Θt)

1

Zβt

Nt∏︂
i=1

[ψ(βt)ϕ(xti, y
t
i)πx(x

t
i)

∏︂
(i,j)∈Et

φ(xti, x
t
j)]P (Λ

t)

= argmax
Λt

log

⎡⎣Nt∏︂
i=1

⎡⎣ψ(βt)ϕ(xti, y
t
i)πx(x

t
i)

∏︂
(i,j)∈Et

φ(xti, x
t
j)

⎤⎦⎤⎦− log(Z̄(Θt))

− log(Zβt) + log(P (Λt))

= argmax
Λt

Nt∑︂
i=1

⎡⎣ ∑︂
(i,j)∈Et

log(φ(xti, x
t
j))

⎤⎦− log(Z̄
X
(Θt)) + log(P (Λt))

= argmin
Λt

Nt∑︂
i=1

⎡⎣ ∑︂
(i,j)∈Et

(xti)
⊤

∥xti∥1
Λt

(xtj)

||xtj ||1
)

⎤⎦+ log(Z̄
X
(Θt))− log(P (Λt))

Assuming a Gaussian prior on the magnitude and the difference in average spatial affinity for Λt:

P (Λt) ∝ exp(−λΛ∥Λt∥2F + λΛ̄∥Λt − Λ̄∥2F )

where ∥ · ∥F denotes the Frobenius norm, λΛ and λΛ̄ are regularization parameters, and Λ̄ is a prior mean matrix.
Therefore the final optimization problem becomes:

Λ̂
t
= argmin

Λt

Nt∑︂
i=1

⎡⎣ ∑︂
(i,j)∈Et

(xti)
⊤

∥xti∥1
Λt

(xtj)

||xtj ||1

⎤⎦+ log(Z̄
X
(Θt)) + λΛ∥Λt∥2F + λΛ̄∥Λt − Λ̄∥2F

This optimization problem is solved using the Adam optimizer, which efficiently handles the potentially complex
landscape of the objective function.

2.6 Derivation of Optimization with βt Prior
After implementing the derivation described above, we found the formulation leading to the embeddings no
longer capturing the biological signal and rather all of the signal to be in the introduced batch effect term.
Therefore, we suggest the introduction of a direct regularization on the βt through a prior similar to PyLiger [8]
(e.g. πβ(βt) = exp(−λβ∥Mβt∥22)). This approach would necessitate revisions to our mathematical formulation
and optimization procedure, described below.

With the introduction of this new prior on βt, our new likelihood function with using the Hammersley-Clifford
Theorem is represented as:

P (Y t, Xt, βt|Θt) =
1

Z(Θt)

Nt∏︂
i=1

⎡⎣ϕ(xti, yti , βt)πx(x
t
i)πβ(β

t)
∏︂

(i,j)∈Et

φ(xti, x
t
j)

⎤⎦
2.6.1 Derivation of the Latent Space (X t) Optimization
Note that since we are still utilizing the alternating coordinate descent optimization procedure, our optimization
of Xt doesn’t change as a result of this new prior and follows as derived in Section 2.3.
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2.6.2 Derivation of the Batch Effect (βt) Optimization
For the optimization of the batch effect term βt, we once again can employ the MAP estimate:

β̂
t
= argmax

βt∈RT×K

P (βt|Xt, Y t,Θt)

= argmax
βt

P (Y t, Xt, βt|Θt)P (Λt)

= argmin
βt

[− log(P (Y t, Xt, βt|Θt))− log(P (Λt))]

To simplify the optimization, we employ the mean-field approximation described in Eq. 2.4:

P (Y t, Xt, βt|Θt) ≈ P (βt|Y t, Xt,Θt)

Nt∏︂
i=1

P (yti , x
t
i|βt,Θt, Xt

−i, Y
t
−i)

=
1

Z̄(Θt)

1

Z ′
βt

Nt∏︂
i=1

[ψ(βt)ϕ(xti, y
t
i)πx(x

t
i)πβ(β

t)
∏︂

(i,j)∈Et

φ(xti, x
t
j)]

This leads to the following optimization problem for βt:

β t̂ = argmin
βt

⎡⎣− log

⎛⎝ 1

Z̄(Θt)

1

Zβt

Nt∏︂
i=1

⎡⎣ψ(βt)ϕ(xti, y
t
i)πx(x

t
i)πβ(β

t)
∏︂

(i,j)∈Et

φ(xti, x
t
j)

⎤⎦⎞⎠⎤⎦

= argmin
βt

Nt∑︂
i=1

[︃
∥Mβt∥22 − 2∥(yti −Mxti)

⊤(Mβt)∥1
2(σt

y)
2

+ λβ∥Mβt∥22
]︃

= argmin
βt

Nt∑︂
i=1

[︄
∥Mβt∥22 − 2∥(yti −Mxti)

⊤(Mβt)∥1 + 2λβ(σ
t
y)

2∥Mβt∥22
2(σt

y)
2

]︄

For a specific node i, this becomes:

βt = argmin
βt

[︄
∥Mβt∥22 − 2∥(yti −Mxti)

⊤(Mβt)∥1 + 2λβ(σ
t
y)

2∥Mβt∥22
2(σt

y)
2

]︄
The Hessian of this objective is given by
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∂2

∂(βt)2

[︄
∥Mβt∥22 − 2∥(yti −Mxti)

⊤(Mβt)∥1 + 2λβ(σ
t
y)

2∥Mβt∥22
2(σt

y)
2

]︄

=
∂2

∂(βt)2

[︄
(Mβt)⊤(Mβt)− 2(yti −Mxti)

⊤(Mβt) + 2λβ(σ
t
y)

2(Mβt)⊤(Mβt)

2(σt
y)

2

]︄

=
∂

∂βt

[︄
2(M⊤M)βt − 2(yti)

⊤M + 2(xti)
⊤(M⊤M) + 2λβ(σ

t
y)

2(M⊤M)βt

2(σt
y)

2

]︄

=
M⊤M + λβ(σ

t
y)

2(M⊤M)

(σt
y)

2

Since M ∈ RG×K
+ , this Hessian is positive definite, meaning we can again employ the same proximal Nesterov’s

Accelerated Gradient method for optimization

2.6.3 Derivation of Parameters (Θt) Optimization
To derive the optimization of the parameters in this re-defined model we need to follow similar computations
that are described in Section 2.5.

Calculation of Partition Function

For the optimization of our parameters, we need to once again compute an analytic form for our new partition
function:

Z(Θt) =

∫︂
Xt,Y t,βt

P (Y t, Xt, βt|Θt) dXt dY t dβt

=

∫︂
Xt,Y t

Nt∏︂
i=1

P (yti , x
t
i|βt,Θt, Xt

−i, Y
t
−i) dX

t dY t

∫︂
βt

P (βt|Y t, Xt,Θt) dβt

=

∫︂
Xt,Y t

Nt∏︂
i=1

⎡⎣ϕ(xti, yti)πx(xti) ∏︂
(i,j)∈Et

φ(xti, x
t
j)

⎤⎦dXt dY t

∫︂
βt

ψ(βt)πβ(β
t) dβt

= Z̄(Θt)Z ′
βt
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Therefore, the computation of Z ′
βt follows as:

Z ′
βt =

∫︂
βt

ψ(βt)πβ(β
t) dβt

=

∫︂
βt

exp

(︃
−∥Mβt∥22 − 2∥(yti −Mxti)

T (Mβt)∥1
2(σt

y)
2

)︃
exp

(︁
−λβ∥Mβt∥22

)︁
dβt

=

∫︂
βt

exp

(︄
−
∥Mβt∥22 − 2∥(yti −Mxti)

T (Mβt)∥1 − 2λβ(σ
t
y)

2∥Mβt∥22
2(σt

y)
2

)︄
dβt

=

∫︂
βt

exp

(︄
−
(Mβt)⊤(Mβt)− 2

∑︁
i∈Vt(yti −Mxti)

⊤(Mβt)− 2λβ(σ
t
y)

2(Mβt)⊤(Mβt)

2(σt
y)

2

)︄
dβt

=

∫︂
βt

exp

(︄
−
(1 + 2λβ(σ

t
y)

2)(Mβt)⊤(Mβt)− 2
∑︁

i∈Vt(yti −Mxti)
⊤(Mβt)

2(σt
y)

2

)︄
dβt

Defining c =
∑︁

i∈V t(yti −Mxti) and a = (1 + 2λβ(σ
t
y)

2)
1
2 which are constant with respect to βt, we have:

Z ′
βt =

∫︂
βt

exp

(︃
− (aMβt)⊤(aMβt)− 2c⊤(Mβt)

2(σt
y)

2

)︃
dβt

=

∫︂
βt

exp

(︃
− (βt)⊤(a2M⊤M)βt − 2(c⊤M)βt)

2(σt
y)

2

)︃
dβt

By completing the square in the exponent:

Z ′
βt =

∫︂
βt

exp

(︃
− (βt − (a2M⊤M)−1(M⊤c))⊤(a2M⊤M)(βt − (a2M⊤M)−1(M⊤c))− (M⊤c)⊤(a2M⊤M)−1(M⊤c)

2(σt
y)

2

)︃
dβt

∝
∫︂
βt

exp

(︃
− (βt − (a2M⊤M)−1(M⊤c))⊤(a2M⊤M)(βt − (a2M⊤M)−1(M⊤c))

2(σt
y)

2

)︃
dβt

Similar to the computation in Section 2.5.1, this integral is a multidimensional Gaussian integral, which means
we can compute a closed-form solution:

Z ′
βt = (2π(σt

y)
2)

K
2 det(a2M⊤M)−

1
2

= (2π(σt
y)

2)
K
2 (a2)−

K
2 det(M⊤M)−

1
2

= (2π(σt
y)

2)
K
2 (1 + 2λβ(σ

t
y)

2)−
K
2 det(M⊤M)−

1
2
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Optimization of the Metagene Matrix M

With this new defined analytic form of the partition functions, the optimization of the metagene matrix, M
changes to the following:

ˆ︂M = argmax
M

T∏︂
t=1

1

Z̄(Θt)

1

Z ′
βt

Nt∏︂
i=1

⎡⎣ψ(βt)ϕ(xti, y
t
i)πx(x

t
i)πβ(β

t)
∏︂

(i,j)∈Et

φ(xti, x
t
j)

⎤⎦

= argmax
M

T∑︂
t=1

log

⎡⎣Nt∏︂
i=1

⎡⎣ψ(βt)ϕ(xti, y
t
i)πx(x

t
i)πβ(β

t)
∏︂

(i,j)∈Et

φ(xti, x
t
j)

⎤⎦⎤⎦
− log(Z̄(Θt))− log(Z ′

βt)

= argmin
M

T∑︂
t=1

Nt∑︂
i=1

[︃
∥Mβt∥22 − 2∥(yti −Mxti)

⊤(Mβt)∥1
2(σt

y)
2

+
∥yti −Mxti∥22

2(σt
y)

2
+ λβ∥Mβt∥22

]︃
+ log((2π(σt

y)
2)

K
2 (1 + 2λβ(σ

t
y)

2)−
K
2 det(M⊤M)−

1
2 )

= argmin
M

T∑︂
t=1

Nt∑︂
i=1

[︃
∥yti −M(xti + βt)∥22

2(σt
y)

2
+ λβ∥Mβt∥22

]︃
− 1

2
log(det(M⊤M))

The derivative for a specific sample t and node i to optimize the expression with respect to M is:

∂

∂M

[︃
∥yti −M(xti + βt)∥22

2(σt
y)

2
+ λβ∥Mβt∥22 −

1

2
log(det(M⊤M))

]︃

=
∂

∂M

[︃
(yti −M(xti + βt))⊤(yti −M(xti + βt))

2(σt
y)

2
+ λβ(Mβt)⊤(Mβt)− 1

2
log(det(M⊤M))

]︃

=
∂

∂M
[
(yti)

⊤(yti)− (yti)
⊤(Mxti)− (yti)

⊤(Mβt)− (Mxti)
⊤(yti) + (Mxti)

⊤(Mxti) + (Mxti)
⊤(Mβt)

2(σt
y)

2

− (Mβt)⊤(yti) + (Mβt)⊤(Mxti) + (Mβt)⊤(Mβt)

2(σt
y)

2
+ λβ(Mβt)⊤(Mβt)− 1

2
log(det(M⊤M))]

=
−(yti)(x

t
i)

⊤ − (yti)(β
t)⊤ − (yti)(x

t
i)

⊤ + 2M(xti)(x
t
i)

⊤ + 2M(xti)(β
t)⊤ − (βt)(yti)

⊤

2(σt
y)

2

+
2M(βt)(xti)

⊤ + 2M(βt)(βt)⊤

2(σt
y)

2
+ 2M(βt)(βt)⊤ −M(M⊤M)−1

=
−(yti)(x

t
i)

⊤ − (yti)(β
t)⊤ +M(xti)(x

t
i)

⊤ +M(xti)(β
t)⊤ +M(βt)(xti)

⊤ +M(βt)(βt)⊤

(σt
y)

2

+ 2M(βt)(βt)⊤ −M(M⊤M)−1
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Like above we can use this derivative to perform gradient descent or Proximal Nesterov’s Accelerated Gradient
(NAG) heuristically to solve the problem.

Optimization of the Variance Parameter (σt
y)

−1

For the sample-specific variance parameter (σt
y)

−1, we formulate:

ˆ︃(σt
y)

−1
= argmax

(σt
y)

−1

1

Z̄(Θt)

1

Z ′
βt

Nt∏︂
i=1

⎡⎣ψ(βt)ϕ(xti, y
t
i)πx(x

t
i)πβ(β

t)
∏︂

(i,j)∈Et

φ(xti, x
t
j)

⎤⎦

= argmax
(σt

y)
−1

Nt∑︂
i=1

⎡⎣log(ψ(βt)) + log(ϕ(xti, y
t
i)) + log(πx(x

t
i)) + log(πβ(β

t)) +
∑︂

(i,j)∈Et

log(φ(xti, x
t
j))

⎤⎦
− log(Z̄(Θt))− log(Z ′

βt)

= argmin
(σt

y)
−1

Nt∑︂
i=1

[︃
∥yti −M(xti + βt)∥22

2(σt
y)

2

]︃
+
G

2
log(2π(σt

y)
2)

+
K

2
log(2π(σt

y)
2)− K

2
log(1 + 2λβ(σ

t
y)

2) + log(det(M⊤M)−
1
2 )

Following similar steps we can compute the partial derivative of the expression for a specific node i with respect
to (σt

y)
−1 while only focusing on the terms that depend on (σt

y)
−1:

∂

∂(σt
y)

−1

⎡⎣ Nt∑︂
i=1

[︃
∥yti −M(xti + βt)∥22

2(σt
y)

2

]︃
+
G

2
log(2π(σt

y)
2) +

K

2
log(2π(σt

y)
2)− K

2
log(1 + 2λβ(σ

t
y)

2)

⎤⎦

=⇒ ∂

∂(σt
y)

−1

[︃
∥yti −M(xti + βt)∥22

2(σt
y)

2
+
G

2
(log(2π)− log((σt

y)
2)) +

K

2
(log(2π)− log((σt

y)
2))− K

2
(log(2λβ)− log((σt

y)
2))

]︃

=
∥yti −M(xti + βt)∥22

(σt
y)

−G(σt
y)−K(σt

y) +K(σt
y)

=
∥yti −M(xti + βt)∥22

(σt
y)

−G(σt
y)

Setting this derivative to zero, and solving for (σt
y)

−1 we get a closed-form solution that provides the optimal
value for the variance parameter

0 =

Nt∑︂
i=1

[︃
∥yti −M(xti + βt)∥22

(σt
y)

]︃
−N tG(σt

y)

ˆ︃(σt
y)

−1
=

⌜⃓⃓⎷ 1

N tG

Nt∑︂
i=1

[∥yti −M(xti + βt)∥22]
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Optimization of the Spatial Interaction Matrix Λt

The optimization of the spatial interaction matrix Λt is not affected by this introduction of the batch effect
term prior and thus the optimization problem stays the same as described in Section 2.5.4.

This derivation suggests a possible solution to the challenge later described where the burden fell entirely
on the batch effect term βt. By introducing an explicit regularization term πβ(β

t) = exp(−λβ∥Mβt∥22), we
provide a mechanism to control the magnitude of the batch effect parameters during optimization. This approach
differs from the above formulation by ensuring that the model cannot simply shift all variation into the batch
effect term while allowing embeddings to collapse. The modified optimization framework maintains the same
alternating coordinate descent structure while encouraging a more balanced distribution of variation between
the biological embeddings Xt and the batch effect βt. Implementation of this regularized approach represents a
promising direction for achieving more robust integration that preserves both the integrity of biological signals
and the effectiveness of batch effect correction.

2.7 Future Directions
During model implementation, we encountered significant challenges with the prior distribution formulation.
In the original Popari framework, the prior on node representations was a simple exponential prior, given by
πx(x

t
i) = exp(−λx∥xti∥1) designed to constrain the magnitudes of xti for simplex projection. However, this

formulation led to a problematic outcome: embeddings consistently collapsed to zero during training, shifting
the optimization burden entirely to the batch effect term βt. While this technically resulted in data integration,
it did so by effectively bypassing the biological signal rather than properly aligning it.

To address this limitation, we proposed a new prior that incorporates cross-dataset information (see
Section 2.1), computing an average across all datasets and spatial entities. This prior encourages embeddings to
remain similar to the average embedding profile across all datasets, meaning that although it is possible for the
embeddings to collapse to zero, it is also possible for the embeddings to integrate at a non-zero value which would
allow for batch-specific variation. This approach while maintaining biological relevance integration, had the
additional benefit of minimal disruption to our original mathematical formulation, as it remains approximately
constant with respect to xti. This is because we are computing the average across all other datasets except the
dataset of interest t.

Although this improved prior demonstrated better performance, further enhancements are possible. A
particularly promising future direction involves developing a prior that explicitly encourages embeddings to
align with their nearest neighbors from different datasets, which would likely correspond to similar cell types.
This approach would simultaneously preserve biological information while promoting batch integration. Since
our optimization approach requires the prior to be approximately constant with respect to xti, implementing
this enhancement would require careful formulation, but it represents a relatively contained modification of the
current framework.



Chapter 3

BatchBlend’s Performance on mSRT
Data

We conducted a comprehensive evaluation of BatchBlend’s batch effect correction capabilities through a series
of controlled experiments using simulated mSRT data. In developing and evaluating these benchmarks, we first
sought to compare BatchBlend against the original Popari framework and then benchmark the methodology
against established batch effect correction methods discussed previously, including PyLiger, scVI and STAligner.

To generate synthetic datasets for this purporse, we extended the mSRT simulator introduced in Popari, by
introducing parameters for simulating batch effect of varying magnitudes for different samples. This simulation
framework enabled us to create “realistic” mSRT data that exhibit technical artifacts observed in real-world SRT
experiments. By using such synthetic mSRT data with user-specified batch effects, we were able to quantitatively
assess the correction performance in a controlled environment. Using the ground truth simulated cell type and
batch labels, we also assessed how effectively each method removed technical variation while still preserving the
true biological signal.

3.1 Simulation of mSRT Data with Batch Effect
In the context of the Popari simulation framework, simulated mSRT expression is drawn from a generative,
metagene-based model, whereas simulated spatial coordinates are generated according to highly-configurable user
inputs. Popari samples a metagene matrix M for all samples, while it generates cell embeddings independently
Xt for each sample. Subsequently, for each sample these quantities are multiplied together to generate expression
values Y t:

Y t :=M ×Xt + noise term

In particular, M ∈ RG×K
+ is generated by sequentially sampling gene weights from a Gamma distribution

while also ensuring a proportion of the gene weights are shared with previous metagenes. Then, within each
spatial domain, each spatial entity is assigned a cell-type label, randomly sampled from a user-specified cell
type distribution. Given these labels, Xt ∈ RK×Nt

+ is then generated in a spatially-informed manner. Their
product yields the gene expression distribution parameters Ỹ

t ∈ RG×Nt

+ for each cell. From these parameters,
the expression value for each entity i, yti , is then sampled from a truncated multivariate Gaussian with mean
given by ỹti and covariance matrix σt

yI ∈ RG×G
+ .

For BatchBlend, we introduce an additive batch effect parameter by sampling a batch effect vector

25
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(a) No simulated
batch effect

(b) Simulated batch
effect strength (σt

β = 1)
(c) Simulated batch

effect strength (σt
β = 2)

Figure 3.1: Visualization of cell type and batch classifications under different levels of simulated batch effect
based on the scale of the standard deviation of the truncated gaussian for 2 datasets each where K̂ = 50%.
Top row shows cell type classification, while bottom row shows batch classification with increasing batch effect
strength from left to right.

βt ∈ RK
+ for each sample t according to a multivariate truncated Gaussian distribution with standard deviation,

σt
β . However, to further control the batch effect strength, only a subset of the K metagenes (K̂) expressed

an added batch effect. For the other metagenes, the batch effect vector is assigned a value of 0. This vector
was directly added to Xt, representing a batch-specific linear shift in the data. This yields the following mean
parameters/generative mode:

Y t =M(Xt +Bt) + noise term,

which aligns closely with the BatchBlend paradigm. We then selected hyperparameters for the simulation
data to ensure that this simulated batch effect is of a similar scale to that found in real mSRT data but still
demonstrates a significant batch effect. We visualized the batch effect using Uniform Manifold Approximation
and Projection (UMAP) plots. This non-linear dimensionality reduction allows us to analyze the data based on
technical variation via batch labels and biological preservation via cell type labels. Batch effect can be observed
since when increasing the intensity of the batch effect, data points cluster by batch identity rather than by cell
type. In the absence of batch effect, points are mixed by batch but clustered by cell type, while with strong
batch effect, distinct regions become dominated by specific batches, compromising the biological signal.

As illustrated in Fig. 3.1, we analyzed the batch effect strength by varying the standard deviation (σt
β) of

the truncated Gaussian distribution used for generation. Without simulated batch effect (Fig. 3.1a), cell types
form distinct, well-defined clusters while batch information appears randomly distributed, indicating no batch
effect across datasets. With a moderate batch effect (σt

β = 1, Fig. 3.1b), cell type boundaries begin to blur
and batch-specific clusters emerge. At stronger batch effect levels (σt

β = 2, Fig. 3.1c), we observe substantial
disruption of biological clustering patterns alongside pronounced batch-specific segregation.

Similarly, Fig. 3.2 illustrates the impact of varying the percentage of metagenes (K̂) affected by batch effect.
In the absence of batch effect (Fig. 3.2a), cell types remain clearly differentiated while batch information shows
no clustering pattern. When batch effect, K̂ = 50% of metagenes (Fig. 3.2b), cell type boundaries become
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(a) No batch effect
(b) Simulated batch
effect (K̂ = 50%)

(c) Simulated batch
effect (K̂ = 100%)

Figure 3.2: Visualization of cell type and batch classifications under different percentages of metagenes with batch
effect strength (σt

β = 2) providing additive batch effect for 2 datasets. Top row shows cell type classification,
while bottom row shows batch classification with increasing batch effect strength from left to right.

partially obscured as batch-specific clusters begin to form. With K̂ = 100% (Fig. 3.2c), biological signal is
severely compromised as batch-specific clustering becomes the dominant organizational pattern in the data.

Based on these comprehensive simulations, we selected hyperparameters corresponding to 50% of metagenes
(K̂ = 50%) receiving an additive batch effect with a standard deviation of 2, as these parameters produced the
strongest batch effect yet realistic conditions for evaluating batch effect correction performance. In addition as
seen in Fig. 3.5, this was the set of hyperparameters of batch effect that showed the most significant drop off in
batch correction and biological conservation scores in Popari which would be the gap that BatchBlend would
hope to fill.

3.2 Evaluation of BatchBlend on Simulated mSRT Data
For qualitative evaluation of BatchBlend to other methods, we visualized the embeddings using UMAP plots
overlayed with batch information and biological annotations. After successful batch effect correction, we expect
the data to cluster primarily by cell type rather than by batch identity. For quantitative assessment, we used
the standardized single-cell integration benchmarking suite (scIB) [17] to measure both batch effect removal
efficacy and biological signal preservation.

To evaluate batch effect removal, we computed several metrics that address different aspects of integration
quality. The Silhouette Batch score provides a global measure of batch mixing, with higher values indicating
successful integration between batches. The Integration Local Inverse Simpson Index (iLISI) offers finer
granularity by quantifying the effective number of batches represented in local neighborhoods after correction.
Similarly, the k-nearest neighbor Batch Effect Test (kBET) evaluates batch mixing at the local level by assessing
whether batch distribution in local neighborhoods matches the global batch distribution, with higher values
indicating better mixing. Graph Connectivity determines whether cells from the same batch form disconnected
subgraphs. Principal Component Regression (PCR) measures the correlation between principal components of
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(a) Raw Simulated
Data with Batch Effect

(b) Popari
Learned Embeddings

(c) BatchBlend
Learned Embeddings

(d) BatchBlend with
Added Batch Effect

Figure 3.3: Visualization of cell type and batch classifications of raw simulated data and the learned embeddings
from Popari and BatchBlend. The learned batch effect from optimization was added back to the embeddings
of BatchBlend.

the integrated data and batch variables, where larger scores indicate greater differences in variance contribution
before and after integration.

To evaluate biological signal preservation, we used multiple complementary metrics. The Isolated Labels
Score quantifies how well cells of the same cell type remain grouped after integration, indicating the preservation
of biologically relevant population structures. The kMeans Adjusted Rand Index (ARI) and kMeans Normalized
Mutual Information (NMI) measure concordance between corrected data clusters and known biological cell types,
with higher values indicating better preservation. The Silhouette Label metric assesses cell type separation
after batch effect correction, where higher values indicate clearer boundaries between cell types. Cell-type
Local Inverse Simpson’s Index (cLISI) measures how effectively distinct cell types remain separated after batch
correction.

Each of the scIB metrics is normalized and scaled to be between 0 and 1 where values closer to 1 suggest better
performance. Optimal scores for each of the metrics comparing across methods were bolded to demonstrate better
performance. Once each of the individual metrics are computed, the scIB framework also provides an aggregate
score that combines batch correction efficiency and biological signal preservation, offering a comprehensive
assessment of integration performance that balances the trade-off between removing technical variation and
maintaining biological information.

3.3 BatchBlend’s Batch Effect Correction Performance
with Respect to Popari

To assess BatchBlend’s capacity for correcting batch effects, we employed a strong set of batch effect simulation
parameters (K̂ = 50% and σt

β = 2) to generate five experimental datasets. Each dataset consisted of 2 batches
containing 225 cells and 100 genes, providing sufficient complexity to evaluate the performance of the method
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Table 3.1: Average Batch integration metrics for benchmark methods on simulated mSRT data. Bold values
show better performance between BatchBlend and Popari; † indicates best overall value.

Method Silhouette batch iLISI kBET Graph connectivity PCR comparison

PyLiger 0.486 0.489 0.259 0.526 0.964†

scVI 0.932† 0.836† 0.907† 0.383 0.909
STAligner 0.680 0.657 0.644 0.410 0.872

Popari 0.527 0.076 0.018 0.781† 0.373
BatchBlend 0.833 0.442 0.578 0.273 0.547

Table 3.2: Average Biological Conservation metrics for benchmark methods on simulated mSRT data. Bold
values show better performance between BatchBlend and Popari; † indicates best overall value.

Method Isolated labels kMeans NMI kMeans ARI Silhouette label cLISI

PyLiger 0.603 0.627 0.431 0.589 0.925
scVI 0.482 0.090 0.031 0.482 0.481

STAligner 0.406 0.271 0.123 0.411 0.658

Popari 0.610† 0.651† 0.459† 0.605† 0.954†

BatchBlend 0.480 0.061 0.012 0.479 0.512

against the original Popari framework. The scIB metrics were calculated for each dataset to evaluate biological
conservation and batch integration, then averaged across the five experimental datasets to identify general trends
for each method.

The optimization procedures for both methods begin with NMF training before transitioning to the full
NMF-HMRF procedure. However, our experimental analyses revealed that BatchBlend demonstrated a
diminished performance in maintaining the learned batch effect parameters during the NMF-HMRF optimization
phase compared to its efficiency during the preliminary NMF phase. Therefore, we restricted BatchBlend’s
training to 50 iterations of NMF optimization, while Popari underwent 10 NMF iterations followed by 50
NMF-HMRF iterations. This limitation highlights a potential future direction of enhancing BatchBlend’s
NMF-HMRF optimization or, alternatively, positioning BatchBlend as a preprocessing step prior to Popari’s
NMF-HMRF phase to leverage the complementary strengths of both approaches.

After optimization, we generated UMAP plots based on the PCA (Principal Component Analysis) of
the embeddings to demonstrate BatchBlend’s batch effect correction efficacy. PCA is used as an initial
dimensionality reduction to truly capture the most variance signal in the data while reducing noise. Fig. 3.3c
demonstrates that for an example dataset, Fig. 3.3a, BatchBlend successfully integrated points from different
batches, as indicated by the mixing of the cells in different datasets in the batch classification plot. In addition
to integrating cell embeddings, BatchBlend effectively modeled the batch effect. When the learned batch effect
was introduced back to the learned embeddings, the dataset was once again separated by batch (see Fig. 3.3d).
Note that the separation of the blue dataset into 2 clusters could be a consequence of the original raw data
separating the same dataset into 2 clusters.

Popari, conversely, lacks an explicit batch effect correction mechanism in its framework. Therefore, as
seen in Fig. 3.3b, the learned embeddings still seem to have batch-specific clustering rather than integration
evidenced by the distinct dataset clusters in the batch classification plot. However, Popari demonstrates superior
preservation of the biological signal seen by the well-defined cell type clusters shown in the cell type labeling of the
learned embeddings. In fact, although the batches aren’t as integrated as BatchBlend, Popari’s representation
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Figure 3.4: Benchmarking BatchBlend’s batch effect correction against established batch effect correction
methods, PyLiger, scVI and STAligner using cell type and batch classification to show integration of the data.

shows cell types from different datasets positioned relatively closer to each other (i.e., the Non-Neuron Ubiquitous
cells).

This trade-off between biological signal preservation in Popari and batch effect correction in BatchBlend
is also outlined in the quantitative metrics shown in Table 3.1 and Table 3.2. Quantitatively, BatchBlend
performed better than Popari at batch integration. Particularly, BatchBlend seemed to perform better at
mixing in local neighborhoods. While Popari far exceeded BatchBlend’s biological conservation. This could
perhaps be explained by the lack of NMF-HMRF training iterations with BatchBlend which may have been
critical to Popari preserving the biological signal.

3.4 BatchBlend’s Batch Effect Correction Performance
with Respect to State-of-the-Art Methods

To comprehensively evaluate BatchBlend performance, we performed a comparative analysis against several
established batch effect correction methods: PyLiger, scVI, and STAligner. This benchmarking allowed us to
assess how BatchBlend performs relative to methods that are interpretable but not specifically designed for
mSRT data (PyLiger), or methods that are specialized for mSRT data but lack interpretability (STAligner) or
both (scVI).

As shown in Table 3.1, BatchBlend demonstrated competitive performance compared to some batch
effect correction methods. BatchBlend performed well at global mixing based on the silhouette batch score.
For local mixing, although the iLISI and kBET scores were lower than those of other established methods,
BatchBlend still achieved reasonably high values. This is most apparent in PCR comparison, where the
established methods changed the variance contribution more than BatchBlend, indicating they were more
effective at removing batch effects. Overall, scVI and STAligner performed better at batch effect correction than
the more interpretable methods. This was also observed in the UMAP (Fig. 3.4), where STAligner and scVI
had clear integration of the different cells in two distinct datasets. Similarly, PyLiger’s clusters can still be seen
as batch-specific.

For preservation of the biological signal, BatchBlend shows competitive performance with respect to
selected metrics, as seen in Table 3.1. PyLiger had similar performance to Popari where cell type conservation
was preserved seen by the Isolated Labels, kMeans NMI, kMeans ARI metrics in Table 3.2 which exceeded
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Table 3.3: Combined weighted aggregate score of the biological conservation and batch integration. Bold values
show better performance between BatchBlend and Popari; † indicates best overall value.

Method Batch Integration Biological Conservation Total

PyLiger 0.52 0.62 0.60†

scVI 0.78† 0.32 0.50
STAligner 0.48 0.37 0.47

Popari 0.40 0.67† 0.54
BatchBlend 0.59 0.31 0.40

BatchBlend’s performance. This can also be seen in Fig. 3.4, where, like Popari, PyLiger had distinct
cell type specific clusters formed in the UMAP with cell type annotation. However, BatchBlend performed
competitively compared to STAligner and scVI in biological conservation, where these methods prioritized batch
effect correction. This is evident in both the quantitative metrics and the UMAP visualization, where despite
successful batch integration, specific cell types become difficult to distinguish in the embeddings. In fact, scVI
seemed to project all cell embeddings into one cloud without any sense of a further cell-type-specific organization.
This perhaps may be an indication of why scVI excels in the quantification of batch effect correction: since it
compresses everything together in one space without considering the biological signal at all.

Comparison of BatchBlend with established batch correction methods is revealing a nuanced performance
profile, as seen in Table 3.3. In batch correction, BatchBlend performs better than Popari and is similar to
PyLiger but does not achieve the integration quality of scVI and STAligner, which may leverage their complex,
non-interpretable architectures to better address technical variation. Similarly, in biological conservation,
BatchBlend performs on par with scVI and STAligner but is limited in the preservation of the biological signals
demonstrated by PyLiger and Popari. This balance of strengths and limitations positions BatchBlend’s
aggregate score below other methods.

3.5 Robustness Analysis of BatchBlend on Different Batch
Effect Simulation Hyperparameters

While Section 3.3 and Section 3.4 examined specific hyperparameter settings, we wanted to systematically
evaluate if the performance of BatchBlend is conditional to the hyperparameters picked in Section 3.2. Under
varying batch effect conditions, we conducted a comprehensive robustness analysis by manipulating the two key
simulation hyperparameters: batch effect strength and the percentage of metagenes affected by batch effect (see
Section 3.1). In addition to the data generated for the previous sections, we generated datasets for five different
random seeds with 225 cells and 100 genes for different choices of batch effect standard deviation values of the
multivariate Gaussian σt

β = {0, 1, 1.5, 2, 3 and 5} and the percentage of metagenes to have simulated batch
effect, K̂ = {0%, 25%, 50%, 75%, 100%}.

The results (as seen in Fig. 3.5) reveal consistent patterns across methods. Batch effect correction and
biological conservation performance significantly deteriorated as the strength of the batch effect increased and
slightly deteriorated as the percentage of affected metagenes increases. This likely occurs because these methods
were developed for existing technologies with less severe batch effects than those in our simulations. In particular,
while Popari maintains superior preservation of biological signals in all combinations of parameters, its batch
correction capability drops drastically with increasing batch effect strength, while BatchBlend still maintains
the capacity to correct for batch effect.
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Figure 3.5: Average Batch Correction and Bio Conservation Metrics across varying simulated Batch Effect
strength parameters (σt

β and K̂). Note that for a batch effect strength of a multivariate Gaussian with σt
β = 0

and where K̂ = 0% of the metagenes are introduced with the added batch effect, the dataset would be the same
since they all depict no batch effect introduced to the dataset. Hence, the scores are the same along these axes.

This is further supported by Fig. 3.6, where for a σt
β = 2, BatchBlend consistently outperformed Popari

in batch effect correction. When 50% of the metagenes are introduced with batch effect, BatchBlend performed
better than Popari at batch effect strengths σt

β ≥ 2. This confirms our hypothesis that explicit modeling
of batch effect through BatchBlend provides more robust correction compared to Popari when technical
variation becomes more pronounced with batch effect strength. At the same time, across all percentages of
batch effect metagenes and standard deviations for the multivariate gaussians, Popari performed better than
BatchBlend. However, the difference in biological conservation gets smaller as batch effect strength decreases.

Compared to the other benchmark methods, BatchBlend demonstrates competitive performance relative
to PyLiger and STAligner in batch effect correction of most parameter combinations, where even in some cases
it outperforms these methods, as seen in the standard deviations in Fig. 3.7. In addition, similar to what is
observed in Fig. 3.6, we see that the batch correction performance decreases as the simulated batch strength
increases. However, as observed in the single case with batch effect strength of 2 and 50% of metagenes, scVI
outperforms these methods by far in batch effect correction. However, as mentioned in Section 3.4, it is possible
that this is because the method does not consider the retention of biological signal, which is seen in the methods
corresponding values of biological conservation metric.

For biological conservation, across different choices of the batch effect simulation hyperparameters, the
pattern still suggest that Popari and PyLiger preserve the biological signal better than BatchBlend, STAligner
and scVI. However, as batch effect signal increases Popari and PyLiger preservation of biological signal decreases
as seen in Fig. 3.7. Although worse than Popari and PyLiger, BatchBlend seems to do as well as scVI
and STAligner, again highlighting the persistent tradeoff between batch effect removal and biological signal
preservation.
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Figure 3.6: Batch Correction Score and Biological Conservation Scores for Selected Choice of Batch Effect
Parameters comparing Popari and BatchBlend. The bar represents the average value across the five seeds
with the error bars representing the standard deviation of the values.
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Figure 3.7: Batch Correction Score and Biological Conservation Scores for Selected Choice of Batch Effect
Parameters comparing all benchmark methods to BatchBlend. The bar represents the average value across
the five seeds with the error bars representing the standard deviation of the values.
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(a) Popari
Learned Embeddings

(b) BatchBlend
Learned Embeddings

(c) BatchBlend with
Added Batch Effect

Figure 3.8: Visualization of cell type and batch classifications of raw coronal mice data and the learned embeddings
from Popari and BatchBlend. The learned batch effect from optimization was then added back to the latent
space embeddings of BatchBlend.

3.6 Assessment of BatchBlend on Mice Brain Slices
To further analyze BatchBlend, we performed integration of high-quality mSRT datasets from three different
spatial transcriptomics technologies. These include: (1) MERFISH data (M500) comprising 218 coronal mouse
brain slices with 1,122 genes; (2) MERSCOPE (M1100) data consisting of 53 coronal slices from the whole
mouse brain with 550 genes; and (3) STARmap (SMP) data containing 17 coronal slices with 1,022 genes. To
perform integration of these technologies, we needed to subset the genes to only include the 258 overlapping
genes. Then for three different seed runs of Popari and BatchBlend, we performed a UMAP on the PCA
of the embeddings and then performed scIB metrics on the batch and higher level annotations of cell types to
assess batch correction integration.

When integrating these technologies, we observed clear separation by technology type, even while the data
clustered by cell types. When performing analysis through Popari (seen in Fig. 3.8a), we see some clear
clustering of the data by cell types, but still separation by batches indicating that the batch signal is still strongly
present in the dataset. BatchBlend demonstrates superior performance in this aspect, effectively integrating
batches (Xt) as evidenced by the large cluster in Fig. 3.8b. When the learned batch effect is added back
(Xt + βt) in Fig. 3.8c, the resulting separation by spatial transcriptomic technology confirms that BatchBlend
effectively captures technology-specific batch effects. This highlights again the power of this existing framework
of the model. However, as seen in the simulated data, when looking at the cell type, the batch integration
does seem to lose some of this biological signal. Unlike the simulation setting, there is some signal preservation,
perhaps similar to Popari. For example there does seem to be some clustering of the excitatory neurons of all
three datasets seen in the bottom of the large cluster.

When quantifying the observed performance difference in the UMAPs, for batch integration (Table 3.4) and
biological conservation (Table 3.5) we see a more fine-tuned aspect of the discrepancy in batch integration and
biological conservation. The global mixing demonstrated by the Silhouette batch and PCR comparison scores
show that BatchBlend successfully removes the batch-specific variance from the overall data structure. In
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Table 3.4: Average batch integration metrics for each of the benchmark methods on coronal mice slices. Bold
values show better performance between BatchBlend and Popari

Method Silhouette batch iLISI kBET Graph connectivity PCR comparison

Popari 0.831 0.010 0.005 0.633 0.148

BatchBlend 0.815 0.266 0.201 0.341 0.439

Table 3.5: Average biological conservation metrics for each of the benchmark methods on coronal mice slices.
Bold values show better performance between BatchBlend and Popari

Method Isolated labels kMeans NMI kMeans ARI Silhouette label cLISI

Popari 0.495 0.229 0.113 0.477 0.982

BatchBlend 0.464 0.109 0.021 0.451 0.726

addition, when looking at the local mixing metrics (iLISI and kBET), BatchBlend shows that it can create
neighborhoods where cells from different batches are well-mixed which we observed in Fig. 3.8. Aggregating all
of the batch correction metrics, seen in Fig. 3.9, shows that BatchBlend performing better than Popari is
consistent across all random seed runs of the methods. However, an observation is that this batch correction
score for BatchBlend seemed to have a relatively greater standard deviation than Popari which perhaps
indicates that it is possible for a single run of BatchBlend, the performance could be worse than the average
outcome. However, for batch correction, BatchBlend’s performance is still better than Popari.

Similarly, when quantifying biological conservation, Popari excels in preserving the biological signal across
all metrics. Clustering-based metrics (kMeans NMI and ARI) indicate that Popari maintains a cell-type structure
that aligns well with cell type labels. The separation metrics (silhouette label and cLISI) suggest that Popari
keeps distinct cell types well separated while ensuring that cells of the same type remain grouped together
(isolated labels). This meant that the total biological conservation score for Popari was consistently greater
than BatchBlend across all random seed runs of the models as seen in Fig. 3.9.

Interestingly, although BatchBlend does not have competitive performance to Popari in biological
conservation, the quantitative metrics difference is not as significant as when we quantified BatchBlend’s
performance on simulated data. This perhaps indicates that our simulations that are supposed to reflect
batch effect found when integrating spatial transcriptomic technologies may be slightly less strong than the

Figure 3.9: Aggregate Batch Correction and Biological Conservation Scores for 3 Random Seed Runs
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hyperparameters we estimated. This, perhaps suggests that the gap between BatchBlend and Popari is
smaller than previously expected when analyzing the performance with simulated mSRT data. This was seen in
the total score shown in Fig. 3.9. In some cases, the current formulation of BatchBlend performs better than
Popari in integration of data from different technologies. However, on average, due to the biological conservation
performance, BatchBlend performs worse than Popari. This stark contrast suggests that BatchBlend’s
batch effect correction mechanism may be overly aggressive, successfully removing technical variation but also
disrupting biological signals in the process. Conversely, Popari’s lack of explicit batch correction preserves
biological information at the expense of leaving technical artifacts intact. This trade-off highlights a fundamental
challenge in batch effect correction: finding the right balance between removing technical noise and maintaining
biological signal integrity.

3.7 Future Directions
Although BatchBlend demonstrates competitive performance against established batch effect correction
methods, several promising research directions could enhance its capabilities. First, incorporating spatial
information into the batch effect correction process represents a critical advancement opportunity. In the current
implementation, although the mathematical framework for spatial interaction is derived in the model formulation,
BatchBlend does not fully leverage this spatial context during batch correction.

This limitation stems from a technical challenge: while the NMF iterations effectively learn batch effect
parameters, subsequent spatial iterations cause the embeddings to collapse to zero values (as detailed in
Section 2.7). Addressing this collapse through modifications to the model formulation would enable BatchBlend
to simultaneously correct batch effects while preserving spatial relationships, potentially improving both
integration quality and biological signal preservation. A possible solution would be implementing the optimization
with a βt prior as described in Section 2.6. Although this has been derived, this has not yet been implemented
and is an immediate next step for BatchBlend.

In addition, further validation of BatchBlend on high-quality real-world mSRT datasets represents
another next step. Thus far, we have described integration of MERFISH, MERSCOPE and STARmap spatial
transcriptomics technologies. However, further technologies can be integrated for coronal mouse brain slices like
CosMx, and Xenium. Beyond successful integration of these datasets, further analysis on potential novel spatial
and biological insights about the mouse cortex would be valuable next steps. This would show the added value
of BatchBlend since prior to this integration, these insights would be inaccessible due to technical variation or
batch effect.
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